Journal of Family Psychology

Parental Involvement in Youth and Closeness to Parents During Adulthood: Stepparents and Biological Parents

Katya Ivanova and Matthijs Kalmijn

CITATION
Parental Involvement in Youth and Closeness to Parents During Adulthood: Stepparents and Biological Parents

Katya Ivanova
Tilburg University

Matthijs Kalmijn
Netherlands Interdisciplinary Demographic Institute, The Hague, the Netherlands

We examined a possible predictor of (step)parent–adult child closeness in adulthood, namely, the frequency of parental involvement in different child-rearing tasks during youth. We expected that although involvement in children’s lives would be important for the strength of all intergenerational ties, it would be particularly important for stepparents’ closeness with their adult stepchildren. We used the Parents and Children in The Netherlands survey to test our hypotheses. Our analytical sample consisted of the reports of adults (25–45 years old; n = 5,107) about how frequently different types of parents engaged with them in activities related to school, leisure, and personal communication (including reports about 1,361 stepmothers and 1,489 stepfathers). Our results clearly demonstrate that an increase in the frequency of performing a task was associated with more closeness during adulthood, but this effect was significantly stronger in stepparent–child compared to biological parent–child ties. We interpret this finding as stepparents having to “earn” or more explicitly demonstrate their desire for closeness to stepparents. An interesting gender difference emerged in the position of divorced biological parents, with adult children’s closeness to divorced biological fathers also being more contingent on parental involvement, whereas that was not unequivocally the case for divorced biological mothers.

Keywords: child rearing, intergenerational solidarity, parental involvement, parent–child closeness, stepparents

Supplemental materials: http://dx.doi.org/10.1037/fam0000659.supp

The rise in the prevalence of stepfamilies across Western countries has been coupled with an increase in the interest in the repercussions of family complexity for family cohesion (Kalmijn et al., 2019). The last decade has seen an emerging concern about the long-term effects of family complexity for indicators of the strength of intergenerational relations such as the perceived degree of parent–child closeness (Becker, Lois, & Salzburger, 2015; Petren, Lardier, Bible, Bermea, & van Eeden-Moorefield, 2019; van der Pas, van Tilburg, & Silverstein, 2013; van Houdt, Kalmijn, & Ivanova, 2019). The main concern has been that if family cohesion is affected by family complexity, this can limit the possibility to rely on family members to provide support for elderly kin. This has become a particularly relevant preoccupation as a number of Western societies face the challenges of aging populations and governments are decentralizing care (Putters, 2014).

The consistent message thus far has been that intergenerational ties are weaker within stepparent–child than biological parent–child dyads (Kalmijn et al., 2019). One dominant explanation for this finding has been the length of (step)parent–child coresidence. This argumentation is grounded in sociological notions of exchange and reciprocity (Silverstein, Conroy, Wang, Giarrusso, & Bengtson, 2002) and in theories about intimate relationship development in general (Kelley & Thi- baut, 1978; Rusbult, 1980): The longer parents live with a child, the more investments they are able to make into that child (financial contributions, but also engaging in child rearing tasks), thus ensuring a stronger intergenerational tie in adulthood. Because stepparents typically enter the life of a child at a later age, they have fewer opportunities to invest in a child, leading to a weaker relationship.

Two assumptions have remained somewhat implicit. Foremost, coresidence is implied to be equivalent to involvement in children’s lives. Indeed, coresidence facilitates parents’ participation in child rearing tasks and their ability to be responsive to children’s needs. However, living with children does not necessarily have to equal engagement with children as different types of parents (step vs. biological) might face distinct barriers to participating in child rearing. The second point is that previous studies almost uniformly treat coresidence as rendering equivalent benefits for distinct types of parents. However, there are theoretical reasons to expect that the
implications of parental involvement are different for biological and nonbiological parent figures.

Our contribution to the study of the strength of adult (step)parent–child ties is twofold. First, we examine the association between (step)parental involvement and the closeness between the child and the (step)parent in adulthood and do not use the length of coresidence as a proxy for involvement. Second, we develop and test hypotheses about why stepparents’ relations with children might benefit more from parental involvement. Our unique data provide sufficient power to not only examine the involvement of biological and stepparents but also to do so separately for fathers and mothers. Our indicator of the adult intergenerational relationship is the closeness of the tie as perceived by the adult child. Closeness has been considered as a key outcome of the strength of parent–child relationships and is frequently used in research on stepfamilies (King, 2006). The data are from the Netherlands, but the theoretical mechanisms we test are general.

In conceptualizing parental involvement, we focus on the frequency with which parents engaged in child-rearing activities during the child’s youth, as perceived and remembered by the child. Our choice of activities was guided by two considerations. First, we avoided age-specific child-rearing tasks (putting a child to bed), as we did not want our assessment of involvement to be affected solely by the timing of parental separation and repartnering. Second, given the well-documented gendered patterns in the performance of certain types of child-rearing tasks (Craig & Mullan, 2011), we chose a range of involvement measures (involvement with schooling, discussing private matters, and participation in leisure activities). This approach does not capture the full scope of parental involvement but spans a range of non-age-specific activities in which mothers and fathers of all social strata might engage and that are important for long-term child outcomes (Dur fur, Parcel, & Troutman, 2013; López Turley, Desmond, & Bruch, 2010; Teachman, Paasch, & Carver, 1997).

Theoretical Background

Involvement With Children and the Strength of Intergenerational Ties

A key mechanism, highlighted in the study of parent–child ties, is based on the sociological notions of exchange and reciprocity. Authors have argued that coresidence can be seen as the basis of strong intergenerational ties because it facilitates the parents’ ability to participate in ensuring the child’s well-being (Silverstein et al., 2002). When parents and children share a household, the parents have an opportunity to make investments in the offspring (financial, but also time and energy), which strengthen the intergenerational bond. That is why coresidence, seen as a proxy for parental engagement with children, has been treated as a main explanatory factor for the weaker stepparent–child ties; stepparents have a more limited time to become involved with a child given that, on average, they share a household with stepchildren for a shorter duration than biological parents (and especially compared to continuously married parents; Becker, Salzberger, Lois, & Nauck, 2013; Kalmijn, 2013). In other words, this theoretical mechanism suggests that it is the magnitude of investments into children that drives later intergenerational differences and not so much who makes them.

While it has been difficult to test exchange mechanisms directly, studies have demonstrated that differences in the strength of involvement with step- and biological parents is largely explained when one accounts for the duration of coresidence, although for mothers a gap remains (Becker et al., 2013; Kalmijn et al., 2019). This finding is consistent with what exchange theory would predict, although alternative mechanisms could also be at play, such as the one postulated by attachment theory (Ainsworth, 1989), which stresses the importance of being a responsive parent to a child (something facilitated by coresidence). What should be pointed out here is that we focus on non-age-specific parental involvement with children, whereas attachment theory focuses much more on the early years of a child’s life.

Differential Effects of Involvement

Our main contribution is the study of whether involvement with (step)children has similar long-term effects for parents insofar as the strength of the adult parent–child tie is concerned. Thus far, studies have treated coresidence as rendering equivalent payoffs for biological and stepparents. Based on two mechanisms, we expect that the effects of involvement will be higher for step- than biological parents. First, we need to recognize the symbolic power of “biology” when it comes to parent–child ties. Cultural norms exist about the primacy of biological parents within the family system, with expectations that, for example, support ought to be provided to these parents irrespective of their past behaviors (Ganong & Coleman, 2006; Rossi & Rossi, 1990). Studies show that the perceived normative obligation to assist an elderly biological parent is higher even when the child did not live with that parent after divorce than to assist a stepparent with whom the child lived in youth (Ganong & Coleman, 2006; van Houdt, Kalmijn, & Ivanova, 2018). Thus, an argument can be made that the strength of the intergenerational tie in biologically related dyads is not as contingent on parental involvement as it is within step-dyads, where stepparents have to more explicitly demonstrate their desire for closeness with the stepchild (Ganong, Jensen, Sanner, Russell, & Coleman, 2019). In a sense, investments are taken for granted in biological ties between parents and children. For stepparents, involvement can be seen as an overt sign of affection and commitment, and this may be appreciated by stepchildren and thus rewarded.

Another mechanism that suggests that there are stronger effects of involvement on adult closeness for stepparents is the fact that whereas engagement with children is expected from biological parents, this is not necessarily the case for stepparents. In fact, most Family Law Codes in Europe explicitly state that the partner of a parent does not have parental responsibilities toward a child beyond the limits of the union and is only meant to support the biological parent in the discharge of their duties (Boele-Woelk, Braut, & Curry-Sumner, 2005). Stepparents are to some extent also institutionally assigned a peripheral role as parents. Therefore, when stepparents engage in behaviors expected from a parent, they engage in behaviors that are not considered typical of their parent category. This can have important repercussions for intergenerational relationships.

Studies from the field of psychology have built upon arguments posited by cognitive information processing and have demonstrated that when individuals display behaviors, normatively ex-
pected from representatives of their salient category (e.g., gender), behavior is less noticeable to outside observers (Allen, 2006). In other words, the visibility of a behavior is somewhat contingent on how unexpected it is from someone representing that category. Research on this hypothesis has been mostly concerned with gender inequality (Allen, 2006; Kidder & Parks, 2001), but the mechanism is more general and can be extended to the case of stepparents. We argue that the involvement in activities with children might be less salient and thus less likely to have an effect on the adult intergenerational relationship when performed by biological parents (from whom that is expected) than by stepparents, who are traditionally ascribed a secondary, less involved role as parent figures.

What Kind of Biological Parent?

Our key comparison is between the strength of ties with stepparents and biological parents. When studying differences between step- and biological parents, one can use either biological parents who are in their first marriage or divorced biological parents. That choice has important repercussions. The advantage of focusing on continuously married biological parents is that those two “original” parents are still together and, thus, possible issues of gatekeeping between them do not complicate the situation (Ganong & Coleman, 2016). In such a contrast, we would compare a stepfather, who is together with the biological mother of the adult child, to a biological father, who is together with the biological mother of the adult child. Thus, those two men are both potentially benefiting from being linked to the key kin-keeping figure within the family system, namely, the biological mother (Kalmijn, 2007; Rosenthal, 1985).

Yet juxtaposing stepparents to continuously married biological parents might be “unfair” to the child–stepparent tie. The disadvantage of such a comparison is that the majority of stepparents join a household after the dissolution of the initial parental partnership. The stepparent is thus not only not biologically related to the children but is also potentially associated with the negative experience of parental separation. Therefore, if we are interested in differentiating between step- and biological parents on the basis of their relationship to the children, rather than on the basis of whether specific family transitions have taken place, we should compare stepparent–child ties to those of divorced parents to their children. Keep in mind that we leave out widowed parents and single parents at birth from our analyses.

We carry out both comparisons and expect that the effects of involvement on closeness during adulthood will be stronger for step- than biological parents. We expect that this difference will be largest for the juxtaposition between stepparents and continuously married biological parents as the latter are the parents toward whom normative obligations might be the strongest. In other words, the strength of the intergenerational tie between an adult child and continuously married biological parents might be least contingent on actual involvement.

Method

Data

We used the recently collected multiactor OKiN survey (Ouders en Kinderen in Nederland; Parents and Children in the Netherlands; Kalmijn et al., 2018). The survey is based on a stratified random sample from the national registers of independently living adults, born in the Netherlands between 1971 and 1991 (aged 25–45 at time of interview). It contains a large oversample of persons who did not grow up with their two biological parents, with an oversample of persons who grew up with a stepparent. The sampling frame for the adult children was based on the Dutch population register (Bakker, van Rooijen, & van Toor, 2014; Prins, 2017), and the systematic oversample was created based on whom the respondents was registered as living with at age 15 years. The actual household situation of the respondents during youth (defined as the period until age 18 or until starting to live independently if prior to age 18) was assessed in the questionnaire.

The fieldwork was carried out in 2017 by Statistics Netherlands, which is bound by the Dutch Personal Data Protection Act. Additionally, the data collection was approved by the Ethics Advisor of the project and the European Research Council officer assigned to this project (ERC grant agreement no. 669334). Adult children (also referred to as “anchors”) received a letter, with an unconditional incentive (a €5 gift certificate), inviting them to participate using an Internet link. Nonrespondents received several reminders. When they did not respond after a month, they were approached for a face-to-face computer-assisted personal interview. One of the advantages of these modes of data collection was that we had complete information on all variables of interest, as respondents were not allowed to skip questions, unless, for example, they had no contact with a given parent. We elaborate on how we dealt with such cases in the measures section. The response rate was 62% (N = 6,485; 31.6% lived with both of their biological parents throughout youth). This response rate is considerably higher than other large-scale Dutch surveys (de Leeuw & de Heer, 2002). Data were also independently collected from the anchors’ current partner figures. The nonresponse in these data was higher, which is why we only utilize the anchor sample. Details about the design of the study are provided by Kalmijn and colleagues (2017, 2018).

For the current study, we utilized two subsamples of respondents. The first group were respondents who lived with both of their biological parents throughout youth and those parents were still together at the time of interview (referred to hereafter as “married biological mother/father”; an additional check demonstrated that 96.4% of these parents were married, with the rest living together in a nonmarital cohabitation). The second group comprised respondents whose parents separated/divorced during the anchor’s youth (referred to hereafter as “divorced biological mother/father”; an additional check demonstrated that 91.2% of these parents were married and subsequently divorced, with the rest experiencing the dissolution of a nonmarital cohabitation). When considering relations with stepparents, we focused on the anchors from the latter group who had a stepparent at some point during youth (coresident or not). Given that we were interested in the long-term effects of involvement in children’s lives, we needed detailed information about stepparental involvement with different tasks during youth and the quality of the current (adult) stepparent-child tie. Therefore, we focused only on respondents whose current stepparent was the same as the one they experienced in youth.

Anchors were asked questions about the parent figures in their lives. Each anchor could report on up to four (step)parent–child relationships (we correct for the clustering of parents within anchors). The analytical sample consisted of 1,576 anchors who grew
up with married biological parents and 3,531 who had a stepparent. The 5,107 anchors reported on 1,576 married biological mothers and 1,576 married biological fathers, 3,383 divorced biological mothers and 2,894 divorced biological fathers, and 1,361 stepmothers and 1,489 stepfathers. The average age of the anchors was 32.72 (SD = 5.47).

Measures

Strength of intergenerational tie. We capture the quality of the parent–child tie with the anchor-reported current closeness with each parent. Closeness was rated on a scale from 1 (very close) to 5 (not close at all) and was recoded so that a higher value denoted a closer tie. This single item indicator has been consistently used in previous works on intergenerational ties (King, 2006; 2009; Klaus, Nauck, & Steinbach, 2012). The anchors could skip this question only if there was no contact with the parent. This was the case for few respondents (highest for stepmothers, n = 56 or 4.1% of the cases, and for divorced biological fathers, n = 91 or 3.1% of the cases). We coded these cases as “not close at all” and added a control variable in the models for “no contact with parent figure.” Alternative ways of measuring closeness (treating these cases as missing) did not lead to different findings. The mean closeness for mothers was $M = 3.61$ (SD = 1.28) and $M = 3.30$ (SD = 1.28) for fathers.

Type of parent. We compared the anchors’ relations to step-parents (reference group) to anchors’ relations to married biological parents and divorced biological parents.

Parental involvement during youth. We operationalized parental involvement as the anchor-reported frequency with which the parent figure participated in various activities with the participant (1 = very often to 4 = (almost) never, with a “not applicable” [NA] option). The anchors whose parents were together throughout youth were asked about the period between the ages of 12 and 18; the anchors with divorced parents were asked about the period after separation or divorce for the biological parents and for the stepparents, from the moment that they entered the anchor’s life until age 18. In order to decide how to treat the anchor-indicated “not applicable” option, we examined which anchors were more likely to opt for it. The check demonstrated that the anchors who chose the “NA” option reported a weaker intergenerational tie with that parent. Choosing to treat these involvement indicators as missing would have meant that our results could potentially underestimate the power of parental investments by omitting the least involved and weakest (step)parent–child ties. Thus, we coded NA as the lowest level of involvement. The precise count of the number of times the NA option was used per item is provided in the online supplemental materials.

The anchor reported about involvement on the following items: 1) talked about school-related issues; 2) helped out with school assignments; 3) discussed personal issues; 4) participated in hobbies and leisure activities; 5) played sports together or took the child to sports. The first two items were combined in a school involvement scale, $r = .68$, $p < .001$, and the last two items were combined in a leisure scale, $r = .59$, $p < .001$. The items were recoded so that higher values denoted higher frequency of involvement. The means and standard deviations of those variables for mothers were $M = 2.27$ (SD = 0.90) for school, $M = 2.13$ (SD = 0.89) for leisure, and $M = 2.44$ (SD = 0.99) for talking about private matters; for fathers those descriptives were $M = 1.89$ (SD = 0.81) for school, $M = 2.01$ (SD = 0.84) for leisure, and $M = 1.88$ (SD = 0.86) for talking about private matters.

Control variables. In our analyses, we controlled for 1) the number of other biological children the parent figure has (within the current partnership, as well as outside that union); 2) the age of the parent figure (in years); 3) the gender of anchor; and 4) whether there was contact between the parent figure and the adult child. Additionally, we controlled for the duration of coresidence during youth between the parent figure and the anchor (calculated in years). As explained in the introduction, this measure is often used as a proxy for the level of parental investments in a child. In our work, we focused explicitly on actual parental involvement, while accounting for the amount of time that the parent figure lived with the anchor and thus, had an opportunity to engage in those tasks.

Results

Descriptive Results

The descriptive results are presented in Table 1. For mothers, the closest ties in adulthood were those between children and married biological mothers, followed by divorced biological mothers, and finally stepmothers. For fathers, the closest tie was found for married biological fathers, followed by stepfathers, and finally divorced biological fathers. When looking at the involvement variables, we clearly saw that married biological parents were most involved in the child’s life, although the difference between types of biological mothers was not significant. Stepfathers were consistently more involved than divorced fathers. It is important to also examine the variance in involvement across the three types of parents. In general, we saw that the variance was lower among married biological mothers than among divorced mothers but the variance was lowest among stepmothers. Differences were small, however, and there was also substantial variation within the category of married mothers. For fathers, the variance in involvement was even more similar across fathers. These observations were important because a larger variance in one group could produce a stronger effect in that group and hence “produce” an interaction effect (Kmenta, 1986). Since the differences were small, there was less concern for this methodological effect.

Main Regression Analyses

We continued with the linear regression analyses. Important to point out here is that although we discuss “effects,” we of course could not ascertain a causal relationship per se. The regression results are presented in Table 2 (mothers) and Table 3 (fathers). The dependent variable and all involvement variables were standardized to $M = 0$, $SD = 1$. Therefore, when looking at the effect of the categorical variables, the findings can be interpreted as effect sizes (Cohen’s d) and as standardized effects (Betas) for the involvement variables. The first model (labeled “key contrasts”) contained only the parent types and control variables (excluding the length of coresidence). We then estimated three pairs of models, each pair using a different type of involvement and the coresidence variable. The first model of a pair contained only the main effect of involvement, while the second model added
Involvement in school

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bio mother, married</th>
<th>Bio mother, divorced</th>
<th>Stepmother</th>
<th>Bio father, married</th>
<th>Bio father, divorced</th>
<th>Stepfather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current closeness</td>
<td>M = 4.11</td>
<td>M = 3.85</td>
<td>M = 2.45</td>
<td>M = 3.92</td>
<td>M = 2.96</td>
<td>M = 3.30</td>
</tr>
<tr>
<td>(SD = .85)</td>
<td>(SD = 1.20)</td>
<td>(SD = 1.20)</td>
<td>(SD = .91)</td>
<td>(SD = 1.36)</td>
<td>(SD = 1.20)</td>
<td>(SD = .88)</td>
</tr>
<tr>
<td>Involvement in school</td>
<td>M = 2.53</td>
<td>M = 2.48</td>
<td>M = 1.43</td>
<td>M = 2.12</td>
<td>M = 1.71</td>
<td>M = 2.01</td>
</tr>
<tr>
<td>(SD = .72)</td>
<td>(SD = .88)</td>
<td>(SD = .62)</td>
<td>(SD = .75)</td>
<td>(SD = .77)</td>
<td>(SD = .88)</td>
<td>(SD = .83)</td>
</tr>
<tr>
<td>Talking about private matters</td>
<td>M = 2.68</td>
<td>M = 2.65</td>
<td>M = 1.62</td>
<td>M = 2.01</td>
<td>M = 1.77</td>
<td>M = 1.95</td>
</tr>
<tr>
<td>(SD = .83)</td>
<td>(SD = .96)</td>
<td>(SD = .78)</td>
<td>(SD = .83)</td>
<td>(SD = .85)</td>
<td>(SD = .90)</td>
<td>(SD = .83)</td>
</tr>
<tr>
<td>Involvement with leisure</td>
<td>M = 2.34</td>
<td>M = 2.31</td>
<td>M = 1.42</td>
<td>M = 2.30</td>
<td>M = 1.97</td>
<td>M = 1.97</td>
</tr>
<tr>
<td>(SD = .78)</td>
<td>(SD = .89)</td>
<td>(SD = .56)</td>
<td>(SD = .82)</td>
<td>(SD = .80)</td>
<td>(SD = .85)</td>
<td>(SD = .85)</td>
</tr>
<tr>
<td>Years of coresidence</td>
<td>M = 17.92</td>
<td>M = 16.90</td>
<td>M = 1.96</td>
<td>M = 17.92</td>
<td>M = 9.42</td>
<td>M = 6.88</td>
</tr>
<tr>
<td>(SD = .68)</td>
<td>(SD = 2.59)</td>
<td>(SD = 3.47)</td>
<td>(SD = .68)</td>
<td>(SD = 5.15)</td>
<td>(SD = 4.67)</td>
<td>(SD = 4.67)</td>
</tr>
<tr>
<td>Age of parent</td>
<td>M = 62.49</td>
<td>M = 60.12</td>
<td>M = 56.35</td>
<td>M = 64.74</td>
<td>M = 62.41</td>
<td>M = 60.70</td>
</tr>
<tr>
<td>(SD = 6.32)</td>
<td>(SD = 6.36)</td>
<td>(SD = 8.04)</td>
<td>(SD = 6.45)</td>
<td>(SD = 6.49)</td>
<td>(SD = 8.18)</td>
<td>(SD = 8.18)</td>
</tr>
<tr>
<td>No contact with parent</td>
<td>0.06%</td>
<td>0.41%</td>
<td>4.11%</td>
<td>0.25%</td>
<td>3.14%</td>
<td>0.34%</td>
</tr>
<tr>
<td>Anchor is female</td>
<td>49.4%</td>
<td>54.2%</td>
<td>55.4%</td>
<td>49.4%</td>
<td>54.0%</td>
<td>55.4%</td>
</tr>
<tr>
<td>Number of other biological children of parent</td>
<td>9.8%</td>
<td>15.7%</td>
<td>30.0%</td>
<td>9.8%</td>
<td>16.9%</td>
<td>32.6%</td>
</tr>
<tr>
<td>No other</td>
<td>40.2%</td>
<td>42.7%</td>
<td>22.6%</td>
<td>40.2%</td>
<td>44.0%</td>
<td>20.2%</td>
</tr>
<tr>
<td>One other</td>
<td>50.0%</td>
<td>41.6%</td>
<td>47.4%</td>
<td>50.0%</td>
<td>39.1%</td>
<td>47.2%</td>
</tr>
</tbody>
</table>

Note. *p < .05. **p < .01.

The interaction between parent type and involvement. We abstained from estimating all involvement variables simultaneously since these were highly correlated.

In the “key contrasts” model in Table 2, we saw substantial differences among mothers. These dissimilarities were strongly reduced after adding the involvement and duration variables. The models including involvement show that the closest tie was between children and married mothers, while stepchildren and stepmothers had the weakest tie (though the contrast between stepmother–child and divorced mother–child was not statistically significant after accounting for involvement and duration of coresidence). This order was found regardless of which involvement variable we used. In summary, when we focused on the contrast between married mothers and stepmothers, the difference in closeness was not “closed” by involvement (and duration of coresidence).

Table 2

Linear Regression Models Predicting (Step)Mother–Child Closeness in Adulthood (Standardized to M = 0, SD = 1), Clustered Standard Errors Within Adult Child

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Key contrasts</th>
<th>Main effect school</th>
<th>Interaction</th>
<th>Main effect leisure</th>
<th>Interaction</th>
<th>Main effect talk</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of parent (ref. = stepparent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio parent, married</td>
<td>1.26** (.03)</td>
<td>.27** (.08)</td>
<td>.31** (.08)</td>
<td>.25** (.08)</td>
<td>.26** (.08)</td>
<td>.27** (.08)</td>
<td>.34** (.08)</td>
</tr>
<tr>
<td>Bio parent, divorced</td>
<td>1.05** (.03)</td>
<td>.12 (.07)</td>
<td>.08 (.07)</td>
<td>.10 (.08)</td>
<td>.05 (.08)</td>
<td>.11 (.07)</td>
<td>.11 (.07)</td>
</tr>
<tr>
<td>Activity (M = 0, SD = 1)</td>
<td></td>
<td>.38** (.01)</td>
<td>.53** (.03)</td>
<td>.34** (.01)</td>
<td>.54** (.04)</td>
<td>.42** (.01)</td>
<td>.51** (.03)</td>
</tr>
<tr>
<td>Interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity × Bio Parent, Married</td>
<td></td>
<td>-.27** (.04)</td>
<td>-.34** (.04)</td>
<td>-.34** (.04)</td>
<td>-.19** (.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity × Bio Parent, Divorced</td>
<td></td>
<td>-.13** (.03)</td>
<td>-.18** (.04)</td>
<td>-.07** (.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of coresidence in youth</td>
<td></td>
<td>.03** (.00)</td>
<td>.05** (.00)</td>
<td>.04** (.00)</td>
<td>.03** (.00)</td>
<td>.03** (.00)</td>
<td>.03** (.00)</td>
</tr>
<tr>
<td>Anchor is female</td>
<td>.15** (.02)</td>
<td>.10** (.02)</td>
<td>.10** (.02)</td>
<td>.08** (.02)</td>
<td>.08** (.02)</td>
<td>.04** (.02)</td>
<td>.05** (.02)</td>
</tr>
<tr>
<td>Age of parent</td>
<td>-.00** (.00)</td>
<td>-.00 (.00)</td>
<td>-.00 (.00)</td>
<td>-.00 (.00)</td>
<td>-.00 (.00)</td>
<td>-.00 (.00)</td>
<td>-.00 (.00)</td>
</tr>
<tr>
<td>Number of other children of parent (ref. = none)</td>
<td></td>
<td>-.05 (.03)</td>
<td>.06 (.03)</td>
<td>.07 (.03)</td>
<td>.05 (.03)</td>
<td>.07 (.03)</td>
<td>.05 (.03)</td>
</tr>
<tr>
<td>One other</td>
<td>-.05 (.03)</td>
<td>.06 (.03)</td>
<td>.07 (.03)</td>
<td>.05 (.03)</td>
<td>.07 (.03)</td>
<td>.05 (.03)</td>
<td>.05 (.03)</td>
</tr>
<tr>
<td>Two or more (other)</td>
<td>-.05 (.03)</td>
<td>.06 (.03)</td>
<td>.07 (.03)</td>
<td>.05 (.03)</td>
<td>.07 (.03)</td>
<td>.05 (.03)</td>
<td>.05 (.03)</td>
</tr>
<tr>
<td>No contact with parent (ref. = contact)</td>
<td></td>
<td>-.14** (.06)</td>
<td>-.10** (.04)</td>
<td>-.10** (.04)</td>
<td>-.10** (.04)</td>
<td>-.09** (.00)</td>
<td>-.09** (.04)</td>
</tr>
<tr>
<td>Constant</td>
<td>-.57** (.10)</td>
<td>-.53** (.09)</td>
<td>-.42** (.09)</td>
<td>-.55** (.09)</td>
<td>-.39** (.10)</td>
<td>-.52** (.09)</td>
<td>-.46** (.09)</td>
</tr>
<tr>
<td>Observations</td>
<td>6,320</td>
<td>6,320</td>
<td>6,320</td>
<td>6,320</td>
<td>6,320</td>
<td>6,320</td>
<td>6,320</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>.621</td>
<td>.399</td>
<td>.403</td>
<td>.382</td>
<td>.390</td>
<td>.431</td>
<td>.434</td>
</tr>
<tr>
<td>AIC</td>
<td>15948.90</td>
<td>14646.99</td>
<td>14600.29</td>
<td>14817.84</td>
<td>14744.21</td>
<td>14300.00</td>
<td>14267.57</td>
</tr>
<tr>
<td>BIC</td>
<td>16002.91</td>
<td>14714.51</td>
<td>14681.31</td>
<td>14885.35</td>
<td>14825.23</td>
<td>14367.51</td>
<td>14348.59</td>
</tr>
</tbody>
</table>

Note. Regression coefficients, with standard errors in parentheses. AIC = Akaike information criterion; BIC = Bayesian information criterion.

Table 1

Descriptive Statistics for Analytical Sample
We now turn to the effects of the involvement variables themselves. We saw positive and significant effects of parental involvement during youth on closeness in adulthood. In standardized terms, the effects were .38 for school activities, .34 for leisure activities, and .42 for communication. These were strong effects and rather similar across types of involvement. The second model of each involvement type included the interaction of involvement and type of parent. Since stepparents were the reference, the interactions showed how much stronger or weaker the effects were for biological parents than for stepparents. The pattern of interactions was identical across types of involvement. They showed that the effect of involvement on adult closeness was stronger for stepmothers than for any type of biological mothers. In general, the contrasts were stronger when we compared stepmothers to married mothers. Hence, the effects of involvement were weakest for married mothers, somewhat stronger for divorced mothers, and strongest for stepmothers. The magnitude of the differences was considerable. For example, the effect of communication with the child on closeness was .51 for stepmothers, which was 59% stronger than for married mothers (.51/(.51 − .19) = 1.59).

Table 3 displays the results for fathers. In the “key contrast” model, we saw a negative coefficient for divorced fathers and a positive coefficient for married fathers. Hence, divorced fathers were less close to their children than married fathers. Stepfathers were also less close to their children than married fathers, pointing to a gap between step- and biological parents. When adding duration of coresidence and involvement, the contrast between married fathers and stepfathers declines (similar to the findings for mothers). Thus, the gap was partly explained by differences in coresidence and involvement.

How strong were the effects of paternal involvement on adult father–child closeness? Table 3 shows again positive and significant effects of involvement during youth. The effects were strong and similar across the dimensions of involvement. The standardized effects were .42 for school involvement, .39 for participation in leisure, and .46 for communication. We saw no evidence for gender differences: The effect of communication with the child were more or less the same for mothers and fathers, just as the effect of participating in leisure.

The interactions between involvement and parent type were partly in line with our hypothesis. The interaction coefficient for married biological fathers was negative and significant. Hence, the effect of involvement on adult closeness was stronger for step- than married biological fathers. This finding was consistent across the types of activities. The magnitude of the differences was substantial. For example, the effect of involvement in leisure with the child on father–child closeness was .44 for stepfathers and .44 − .20 = .24 for married fathers (83% stronger for stepfathers). The focal differences between mothers and fathers was in the results for divorced parents. The interaction between involvement and divorced fathers was not negative and in one instance was even positive, albeit small (for school involvement). In other words, the effect of involvement for stepfathers was not stronger when we compare them to divorced biological fathers.

To look at the interactions in detail, we plotted the predicted values of closeness in adulthood in Figure 1. Given the similarity of the results across types of involvement, we only plotted the interaction with involvement with school. At low levels of involvement, biological mothers were much closer to their children in adulthood than stepmothers. Divorced mothers were in between the three types of mothers. Increasing involvement during youth was associated with closer ties in adulthood for all types of mothers, but the slope was steepest for stepmothers. At high levels of involvement, this led to a convergence in levels of closeness. The figure for fathers shows a similar pattern: a substantial gap in closeness at low levels of involvement, a steeper slope for stepfa-
themselves, and no difference at all for the highest levels of closeness. Yet here, dissimilar to the findings for mothers, we saw that divorced fathers were more similar to stepfathers than to married fathers.

Robustness Checks

We carried out a number of robustness checks, and they are discussed and presented in the online supplemental materials. Here we present only one of these checks. For reason of succinctness, it was carried out with a single scale for parental involvement that combined all involvement items (α = .87). We estimated our main effect models using the alter (i.e., parent)reported level of involvement with (step)children and the current level of closeness as reported by the anchor. These analyses were carried out in order to ensure that the use of single-source retrospective data was not affecting our findings. The results are displayed in Table 4. Our analytical sample here was smaller due to the fact that not all parent figures were present in the alter data (response rate of 38%). What can be observed in Table 4 is that even when we used the involvement as reported by the parents, it was still positively associated with the current level of closeness between the parent and the adult child, as reported by the anchor, although the magnitude of the effects was smaller.

Discussion

The departure point for the present contribution was the well-documented finding that intergenerational ties are weaker within stepparent–child than within biological parent–child dyads (Becker et al., 2013; Delongis & Preece, 2002). Overall, our findings highlight the importance of “biological” relatedness for parent–child closeness, although notably more so for mothers than for fathers. Foremost, we found that the intergenerational ties between adult children and stepparents are less close than those that children have with their continuously married biological parents. For ties with mothers, the magnitude of the difference in closeness was substantial and, although diminished in magnitude, persisted even after accounting for the length of parent–child coresidence and for parental involvement. This gap was also present, yet less pronounced, when examining the relations of adult children with fathers. The findings juxtaposing married biological parents and stepparents clearly point to the long-term toll that family complexity might take on family cohesion. Even after we account for the fact that, on average, stepparents do not live with children as long as continuously married biological parents and for the magnitude of different parents’ involvement with (step)children, we still see closer intergenerational ties in households with married parents than in stepparent households. This point is strengthened by our findings about ties with divorced biological parents.

The juxtaposition between stepparent–child and divorced biological parent–child closeness demonstrated two key points. Foremost, once we account for coresidence and the magnitude of parents’ involvement with children, we no longer see a significant difference in children’s closeness to mothers. In other words, the limited involvement of stepmothers in child-rearing activities appears to be an important driving factor behind the substantially lower closeness that adult children experience to them compared to divorced biological mothers. However, when considering fathers, a different story emerged, namely, a story about the substantial negative impact of divorce for men’s relations with their biological children (Kalmijn, 2007). We found that adult children reported less close ties with their divorced biological fathers than with stepfathers. Interestingly, that “divorce gap” was not closed by measures of coresidence or frequency of involvement. In other words, this finding points to the importance of stable partnerships for men’s relations to their adult children (or what has been dubbed “the partnership premium” for fathers; Kalmijn et al., 2019).

The second key aim of this contribution was to examine if involvement with children was more strongly associated with intergenerational closeness for stepparents than for biological parents. Our expectation was that due to the normative power of “biology” and the more expected nature of involvement for biological parents, we would see a stronger link between involvement and closeness in adulthood for stepparents. Indeed, our findings demonstrated that for similar increases in involvement, the “gains” in closeness were much larger for stepparents than for married biological parents. Again, the story differed somewhat when we examined divorced biological parents, with their gains being more similar to those of stepparents, especially in the case of fathers. In
other words, the story is not necessarily one of primacy of biological relatedness, at least not in a gender-neutral way; closeness in intergenerational ties for both stepfathers and divorced biological fathers is more contingent on involvement than for married biological fathers.

An important point needs to be made about the interpretation of the interaction effects that we found in our work. Although they could be conceived as a “step advantage,” where stepparents experience sharper increase in closeness than biological parents for similar increases in involvement, an alternative interpretation of this finding is that stepparents have to do more to gain the same closeness. This indeed becomes rather evident when one considers that closeness with both stepfathers and stepmothers is similar to that with married biological parents only at high levels of stepparental involvement. Importantly, these higher levels of engagement were not prevalent among stepparents and stepmothers in particular. In other words, given the reported levels of parental involvement, our work points to substantial differences in the long-term quality of intergenerational ties within households with continuously married parents and stepparent households. This certainly is an important point to make, given the long-term consequences that we were studying. Those families were not in the midst of family restructuring, which can be a particularly straining period (Stewart, 2007), but had rather experienced, and potentially adapted to, those youth transitions.

Our findings should be considered in light of some caveats. First, we utilize retrospective data and cannot speak of strictly causal effects where involvement leads to parent–child closeness; our interpretations above are based on the outlined theoretical mechanisms. Although these were salient and important activities that children probably remember, there was the potential of memory bias. It may be that children who had a positive current relationship with a parent were more likely to have positive memories about the past even if the relationship at the time was not so good. This could lead to an upward bias in the effect of involvement—as measured—on closeness. In other words, it was possible that the main effects were overestimated, but it is more difficult to see that the interaction effects would be biased. Important to point out here is that previous studies on retrospective reports of parental activities have shown that although there is correlated error in adult children’s reports, there is also random measurement error that might, in fact, lead to an underestimation (rather than overestimation) of the main effects (de Vries & De Graaf, 2008; de Vries, De Graaf, & Eisinga, 2009).

There is also a potential concern that bias arises from the fact that parental behaviors and feelings about the relationship were reported by the same person, something that may occur regardless of whether the measure was retrospective. Our additional robustness checks showed that parent-reported involvement was also positively associated with child-reported closeness, which should alleviate concerns about this bias. Yet we cannot exclude the possibility of a certain “family bias” where close-knit families tend to recollect the past in a particularly positive light. The way to potentially overcome such reporter bias is to have independent observations of parents’ continuous interactions with their (step) children.

Another potential issue in our study is our measure of involvement. The key question here is whether we truly capture the types of activities that married biological parents might be engaging in with their children, and thus securing a stronger intergenerational tie later on. The activities that we focused on are rather non-age-specific and cover a range of types of parental involvement. Yet we cannot deny that we might be missing specific aspects of child rearing in which married biological parents might be engaging regularly. What our findings show is that closeness with a married biological parent is less contingent on the tasks that we examined (and that are similar to other studies on the importance of parental engagement in child rearing; López Turley et al., 2010; Teachman, Paasch, & Carver, 1997) than for other types of parents.
Potentially important here is also the question of timing. The adult children were asked to report on different parents’ involvement over the course of the child’s youth. Yet the issue remains whether later parent–child closeness is more contingent on engaging with a parent intensively for a short period of time later in youth (which is more likely the case for stepparents) or on having an involved parent throughout youth. Such issues of timing and duration of involvement are unfortunately impossible to address using these data and would be interesting to consider using time-use data that usually have much more precise measures of time spending. We chose not to utilize such a data source as these surveys rarely include large enough samples of nonbiological parents.

Another way to build upon our findings would be a more in-depth consideration of the mechanisms driving our findings. We postulated hypotheses as to why stepparental involvement with children might be associated with more pronounced increased adult closeness than the involvement of biological parents. However, we did not assess directly these mechanisms. It could indeed be that our findings are driven by the symbolic power of “biology,” which dictates the primacy of biological parents in intergenerational ties and, thus, potentially makes biological parent–child closeness less contingent on parental involvement (Ganong & Coleman, 2006; Rossi & Rossi, 1990; van Houdt et al., 2018). Alternatively, however, it could be that children felt especially close to involved stepparents because they more closely resembled what biological parents do, something that is normatively (and structurally) not expected from stepparents. A more nuanced consideration of the specific mechanisms driving the link between involvement and (step)parent–child closeness as well as of the reasons why some parents might be more or less involved (e.g., because of obligations to other children), remain beyond the scope of this work.

We conclude by considering what our findings mean beyond their repercussions for theorizing about the quality of (step)parent–child ties. Foremost, our findings clearly underscore that national policies calling upon “the family” to step in when individuals are in need of care (Putters, 2014) might be ill-advised, given the long-term legacy of parental separation and repartnering for close family network as a result of these family transitions—divorced fathers and stepmothers. Yet it is important to note here that we studied some of the earliest cohorts to grow up during the increase in family complexity in the Netherlands (Kalminj et al., 2018). Currently, we are observing a changing landscape of step-families with the increased prevalence of shared custody (Poorman & van Gaalen, 2017), which is presumably coupled with higher parental involvement of both divorced biological fathers and, as a consequence, stepmothers. It remains to be seen how those changing patterns of (step)parental prominence in children’s lives will impact long-term intergenerational ties.

References

Received July 5, 2019
Revision received February 20, 2020
Accepted February 23, 2020